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Deformable shell description for the phonon spectra of 
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I V Kurchatov Institute of Atomic Energy, 123182 Moscow, USSR 

Received 5 February 1990 

Abstract. The theory of interaction between charge-density distortions (CDD) and phonons 
is proposed for insulating crystals with soft intra-atomic modes. A general classification of 
the possible types of phonon renormalisation is given for cubic crystals with NaCl and CsCl 
structures. A novel excitonic mechanism of CDD is offered and additional dispersion of the 
phonon renormalisation due to non-locality of such excitons is discussed in comparison 
with the standard theory of CDD. The theory is applied to the special case of rare-earth 
semiconductors with unstable valency. In these systems the sources of such CDD modes are 
the dipole excitations of the f shells and the very soft monopole excitons corresponding to 
valency fluctuations. The theory is compared with the experimental phonon spectra of SmS. 

1. Introduction 

Two approaches coexist in the contemporary theory of electron-phonon renor- 
malisation of the phonon spectra in metals and insulators. The first one, phenom- 
enological par excellence, adds to the rigid-ion dynamical matrix of Born-von Karman- 
Kellerman the contributions due to the electronic density deformations accompanying 
adiabatically the ion motion and polarising the cores (see e.g. Allen 1977). Different 
versions of this phenomenological approach are known as the local charge-density 
deformation (CDD) model, deformable cluster model, etc. These models have been used 
to describe the phonon spectra in various metallic and insulating compounds, and the 
results of such calculations are listed, for example, in the book of Bilz and Kress (1979). 
On the other hand, the ‘microscopic’ methods based on the Frohlich Hamiltonian for 
the electron-phonon interaction have been widely applied to a great variety of pure 
metals, metallic compounds and semiconductors (see e.g. Sinha 1977). These methods 
start from the band description of the electronic subsystem and consider the virtual 
intraband and interband transitions induced by lattice distortions as the main con- 
tribution to the electronic response function. Certainly, numerous attempts have been 
undertaken to use this microscopic description to substantiate the CDD approach (see e.g. 
Weber 1973). But the Frohlich Hamiltonian by itself demands microscopic derivation 
because of the ambiguity in defining the ‘adiabatic’ phonons (Brovman and Kagan 1974); 
hence such substantiation seems to be rather dubious. 

The starting point of this paper is the intention to include in the microscopic grounds 
of CDD theory not only the virtual excitations of the free electron-hole pairs but also the 
contribution of the virtual bound pairs, i.e. the excitonic states. Such extension of the 

0953-8984/90/316491 + 16 $03.50 @ 1990 IOP Publishing Ltd 649 1 



6492 K A Kikoin and A S Mishchenko 

theory can introduce new features in the description of the electron-ion interaction in 
the case of local or intermediate-radius excitons, which can be naturally treated as the 
source of local charge deformations. The task seems to be particularly relevant for 
crystals containing transition-metal and rare-earth elements with unfilled d and f shells. 
There are at least three reasons for such expectations. First, the local character of the 
valence d( f)-electron wavefunctions imply in principle the predominantly local character 
of the interaction between the electron motion and lattice displacements. Secondly, 
the intra-atomic degrees of freedom of the cores with unfilled shells allow additional 
possibilities for generation of Frenkel-type excitonic states in a crystal that are absent in 
ordinary sp semiconductors and metals. Thirdly, the poorly overlapped d and f shells of 
those elements form narrow bands in a crystal; hence the validity of the adiabatic 
approximation for band motion becomes dubious in this limit. Thus one may expect that 
the excitations of the fast intrashell degrees of freedom will be the preferred way of 
adjusting the electronic subsystem to the lattice displacements. In this paper we focus 
mainly on the first two points. 

2. General approach 

The deformable shell model (DSM) is based first on the adiabatic approach to the 
electron-ion system, and secondly on the local description of the electronic degrees of 
freedom (Allen 1977). Introducing the localised basis for the electron charge deform- 
ation 6p(r) ,  

6p(r)  = C Pri ( l ) f r i ( r  - R,) (2.1) 
r 

where RI is the lattice site coordinate and i stands for the Cartesian components of 
distortions obeying the point group symmetry representation r, this approach eliminates 
the electronic variables from the system of coupled equations for the atomic distortions 
U and charge deformation 6p. As a result, the electroniccontribution to the force matrix 
has the form 

where (0 I . . . IO) means integration over electronic coordinates in the ground state of 
the electronic subsystem, ~ ( r ,  r ’ )  is the charge density response function, which generally 
has the form 

(2.3) 

Hei is the electron-ion interaction Hamiltonian admixing the excited states I P )  of the 
electron subsystem to the ground state IO).  Transitions (0-P) describe consistently the 
dielectric response of the electronic subsystem to the lattice site displacements, provided 
we know exactly the set of excited states that describe the adiabatic adjustment of the 
electron density 6p(r)  to those displacements. 

Ensuring that the electron-hole pairs of free carrier excitations above the ground 
state of the occupied Fermi sphere 

I k, q )  = N-’  2 b,?+l,obj,a8 IO) exp[ -iqRj + i(k + q)R,] 
j l  
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exhaust the set of relevant excited states of the electron subsystem (a  is the band index), 
we come to the well known dielectric formalism (Sham and Ziman 1963), and the main 
difficulty we meet is the problem of calculating the band structure and inverting the 
dielectric function of the crystal (Sinha 1969). However, the intra- and interband elec- 
tronic transitions are not the only excitations that can contribute to the dielectric 
function. There are at least two extra contributions to the electronic response, i.e. 
collective excitations (excitons, plasmons, . . . ) and intershell atomic transitions describ- 
ing the deformation of atomic cores of the lattice ions, which can be inserted in the P 
sum in (2.3). To be more exact, the latter branch can also be treated as coherent Frenkel- 
type excitations, and the bound electron-hole pairs can be included into the set {P},  
being written in the Wannier-Mott representation 

where a, a' stand for the empty conduction and occupied valence states of non-metallic 
crystal, for which the excitonic language is adequate, F(1) is the envelope function, which 
characterises the radius of the exciton, and can be small (I = 0, Frenkel-type), large 
(I % a ,  Mott-type) or intermediate (1 = 0, NN, NNN). 

Our aim is to give the microscopic definition of the 'entities' (Allen 1977) whose 
motion is responsible for the charge-density distortions, to understand some general 
properties of the deformable shell model and to exploit this understanding in a special 
case of the rare-earth semiconductors with unstable f shells. For this sake we begin with 
the general investigation of the electronic contribution to the lattice dynamics of a two- 
sublattice crystal. We consider the equations of motion for the lattice displacements 
(polarisation vectors) and propose the procedure of separating the contribution of the 
rigid ion (RI) part of the dynamical matrix from the CDD contribution to the dispersion 
curves of the acoustic and optic phonons in high-symmetry directions of the Brillouin 
zone in NaCl and CsCl lattices. 

Hence we introduce the dynamical matrix D(q) in the form 

where B(R')(q) is the Kellerman-type dynamical matrix for the purely ionic crystal 
and d ( C D D ) ( q )  is the adiabatic electronic contribution, which is obtained by Fourier 
transforming the force matrix (2.2), 

where the expansion 

D ( C D D ) ( q )  = D q q )  
r 

reflects the possibility of classifying CDD by the irreducible representations of the crystal 
point group (2.1). Generally speaking, the expression (2.1) also results in non-diagonal 
contributions Dfrr') to the dynamical matrix, but these non-diagonal elements are small 
as a rule (see e.g. Allen 1977) and are often symmetry-forbidden (e.g. in the case of 
excitonic contributions), so we will omit these terms for the sake of simplicity. The 
diagonal CDD-CDD intersite self-energy O(rr)(q) is neglected, and its influence is dis- 
cussed in section 3. 
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Each CDD contribution to the frequency renormalisation can be factorised as 

A(r)w:, = A&?@(r)(q, o w ) ( 2  * 8 )  
where the net q dependence entering the form factor @(r)(q, oqa) is determined by the 
lattice and CDD symmetry, by the spatial extent of the electronic states and by the 
dispersion of the electron excitation spectra. Here A is the coupling strength parameters 
characterising the physical mechanism switching on the contribution of the CDD of given 
symmetry I'. Factorisation (2.8) allows one to analyse the dispersion of lowest-order 
CDD contribution to the renormalisation of a given phonon branch in a crystal of a given 
structure before considering its microscopic nature and irrespective of its strength. The 
factor @(r)(q, oqa) can in turn be factorised in many cases 

@ v ? 9  o g n )  = @P(% @ q a ) W ) ( %  W g a )  (2.9) 

thus separating the standard contribution @Lr)(q, oqn) of the localised CDD model (see 
e.g. Allen 1977, Miura et a1 1984) from all other contributions @ir)(q, cog,) to the 
dispersion of phonon renormalisation. 

Moreover the inverse problem of restoring the symmetry of essential CDD, which 
dominates in the electronic contribution to the phonon spectrum from the experi- 
mentally measured phonon dispersion, can also be formulated and solved in some cases. 
To make the problem solvable we begin with an analytical consideration of the system 
(2.7) for the NaCl lattice in the high-symmetry direction with 

(2.10) 

for the matrices entering the system (2.7),  where indices 1 and 2 stand for the cationic 
and anionic sublattices, respectively. 

Starting from the standard Kellerman-type rigid ion description of the phonon 
spectrum, we are interested in calculating the frequency renormalisation Ami, due to 
the CDD contribution (a is the branch index). The first-order frequency shift is given by 

(2.11) 

where are the phonon frequencies in an RI model, for which one has the analytical 
expression for the high-symmetry directions [ l o o ] ,  [1 lo]  and [111] (Woods et a1 1960): 

=:[CO: ? (U! + 4 1 D ( 2 / M , M 2 ) 1 / 2 ]  (2.12) 

where 

For the contributions of the CDD of different sublattices to the renormalisation (2.11) in 
the high-symmetry directions simple calculations give the following equation: 

(2.14) 
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In the nearest-neighbour approximation for the RI dynamical matrix 

6(wt  w ? )  = w i = L , a = L O , L A  (2.15) 

Now we turn to the analysis of the formfactors (2.8) for the different symmetries of 
CDD modes. Such analysis can be carried out independently of the model chosen for 
calculating the RI phonon spectra. 

To demonstrate the method of extracting the deformable shell contribution, we 
begin by calculating the standard formfactor @b')(q, oqa) of the localised CDD model 
(Allen 1977) and restrict ourselves to the interaction of the polarisable ion shell with 
ions of other sublattice in the NN approximation. In this approximation the shell deform- 
ation in a given sublattice induces the effective interaction between the ions of another 
sublattice and hence contributes only to the diagonal matrix elements Di') (i = 1,2)  of 
this second sublattice (except r = T u ) .  The dipole CDD mode will be considered sep- 
arately, and now we turn to the even modes, the only possible ones of which in the NN 
approximation are r:, 

The standard procedure for calculating the matrix elements of D(r) (see e.g. Allen 
1977) gives the following compact representation for the contribution of CDD on the 
sublattice 1 to the frequency renormalisation: 

, r:, and r;. 

(2.16) 

with 

Here 0 < q < n, for [ loo]  and [110] directions, 0 < q < n/2 for [ill] direction;p = 1, 
t = 2; factors nLr)[gl E2E3] are listed in table l(a); the constant F\r) is combined from 
the parameters of shell-shell overlap (@I) and core-shell spring (kc')) forces. Equation 
(2.16) is consistent with table 1 for the dynamical matrix in the article of Fischer et a1 
(1972)T. Our renormalisation can be obtained using the matrix elements and D$i) 
listed in that table after reducing these elements to the symmetry directions of the cubic 
lattice (see e.g. table 1 in Woods et a1 1960). 

Hence the procedure of selecting the symmetry-dependent factors @&')(q, oqa) in 
the cases of A ,  E and A directions of the Brillouin zone gives the simple form of standard 
dispersion of renormalisation (2.9): 

A"' Fir) @h') (4, W q a )  = A W M  (q)n(,r) [ E 1  E 2  5 3  1 sin'(q/P). (2.18) 

Owing to the absence of the last term in (2.14) for the even modes (see above), all 
possible types of CDD softening can be simply classified in accordance with figure 1 and 
table l(b). 

Now turning to the odd modes we consider first the rT5 deformation. The same 
procedure results in the phonon renormalisation given by equation (2.16) with p = 2, 

t One should note a misprint in table 1 of Fischer et a1 (1972): the matrix element Df,(kklq) for r = rT5 has 
the form (cos qy - cos qJ2. 
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Table 1. Even modes. 

(a) Factors nL?[ljl, g2,  g3] entering equations (2.16) and (2.18) for even CDD 
modes. 

Longitudinal r; 1 0 2 0 0 3 0 
coup 1 in g r t  2 0 1 0 3 0 3 

Transverse r& 0 1 0 2 2 0 3 
coupling r; 0 1 2 2 0 4 3 

( b )  Types of formfactors for phonon renormalisations due to CDD distortions of 
the heavy and light ions in the NaCl structure (see figure 1). 

Direction [1001, [1101 111 

Branch Acoustic Optic Acoustic Optic 

Heavy 3 (2) 2 2 1 
Light 2 3 (2) 1 2 

aPolarisations: TI, q / / [ O O  11, qi to [ loo]  plane; Tz, ql/[l i o ] ,  911 to [ loo ]  plane. 

I1 

Figure 1. Types of phonon frequency renor- 
malisation in crystals with NaCl structure, 

= cPbr)/2wt, (see equations (2.16) and 
(2.17)). 

I 

Figure 2. Typical dipolar renormalisation of 
phonon branches in the NaCl structure (see 
equation (2.19)) for polarisable heavy ions. Full 
(broken) curves stand for optic (acoustic) 
branches. 
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Table 2. Odd modes. (See notations to table 1 .) 

rzs 0 4 4 0 4 0 0 

Direction I1 001, [I101 [1111 

Branch Acoustic Optic Acoustic Optic 

Heavy 4 (1) 1 Absent Absent 
Light 1 4 (1) Absent Absent 

t = 4. The types of formfactors and the meanings of nLr)[E1 g 2 E 3 ]  are listed in table 2 
and figure 1. 

Zeros of types 3 and 4 arise at such wavevectors for which the nearest neighbours of 
the polarisable ion in the given branch are at rest (see below (2.20)). This is the case of 
the points in the Brillouin zone where intersublattice RI matrix elements of D(q) are 
zero. Such situations are found for L[gOO], L[ggO] and T2[gE0] branches, but as a rule 
D(q)  # 0 for all q for T[gOO] and Tl[EgO] branches. In these cases zeros vanish and types 
3 and 4 transform to types 2 and 1 respectively (the types for the latter case in table 1 are 
given in parentheses). 

The last mode is the dipole deformation r U, which was considered in the original 
shell model (see e.g. Woods et a1 1960) and in the first attempts to interconnect the 
dielectric formalism and the local description of CDD (Sinha 1969). In the absence of 
long-range Coulomb forces, dipolar contribution to the phonon renormalisation is given 
by the equation 

m: - sgn(M2 - M,)w? 
2 

1 s2 si CO: + sgn(M2 - M l ) d  
+ -(- + 2 

- 
M2 kl +So k2 +So 

(2.19) 

where So and S(q) are the usual diagonal and intersublattice overlap matrices, which are 
similar to the corresponding ones of the NN rigid ion model (see e.g. Woods et a1 1960). 
Figure 2 represents the phonon renormalisations Amqa in this case. 

A similar procedure can be realised for the CsCl structure. Here we present the 
phonon renormalisation Amqa described by the formfactor @p6(q, mqn) calculated by 
means of equation (2.14) for the two most important cases of monopole and dipole CDD 
modes (figure 3). 
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Figure 3. Typical frequency renormalisation for 
the CsCl structure in the case of polarisable heavy 
ions. Full (broken) curves stand for optic (acous- 
tic) branches. (a )  r; mode; ( b )  Ta mode. 

It is worth noting that the analytical expressions (2.14), (2.17) and (2.19), which are 
equivalent to the second-order perturbation theory for the CDD contribution to the 
phonon frequency shift (see below) , arevalid only for small enough CDD renormalisation, 
but the specific form of the formfactor is defined mainly by symmetry considerations; 
thus the characteristic dispersion of this renormalisation (figures 1-3) remains the same 
as in the exact solution of the system of dynamical equations (2.7). 

At the end of this section we present the analytical expression for the relative 
displacement of the ions in both sublattices of a diatomic crystal for the high-symmetry 
directions via the same quantities A aMi(q)  that enter the equation (2.16) for the phonon 
shift. The routine procedure of solving the system of two linear equations gives for uq 

(2.20) 

where s = 1 (2) for acoustic (optic) branches. 
Substituting these uq into the standard formula for the electron-phonon coupling 

constant, and calculating the second-order contribution to the phonon frequency, we 
obtain the above equation (2.16) for Ami, when neglecting all contributions to the 
phonon dispersion beyond the RI and point CDD approximation, which are accumulated 
in factor @ir)(q,  mqa) in equation (2.9). 

Thus we see that the phenomenological model of CDD specifying only the symmetry 
of this distortion is capable of describing the characteristic features of the electronic 
contribution to the phonon renormalisation without appealing to the microscopic nature 
of CDD excitations. For example, the calculations of Ichinose and Tamura (1983) for 
mixed-valent TmSe and of Matsuura et a1 (1980) for mixed-valent Sm, -,Y,S, starting 
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with ‘microscopic’ considerations of band contribution to the self-energy part of the 
phonon Green function, end with the simplest expressions for the electron-phonon 
coupling constant in which we recognise the RI and point CDD phenomenological con- 
tribution for the breathing mode rl (2.16). 

Now we turn to considering the more refined details of CDD contributions, which in 
principle cannot be described in the framework of the general approach and demand 
microscopic analysis of the elementary excitations in specific systems. 

3. Electronic and excitonic contributions to CDD mode in narrow-gap semiconductors 

One of the most advanced attempts to understand the microscopic grounds of the 
CDD approach was undertaken by Weber, who introduced the ‘double-shell model’ to 
describe the phonon softening in transition-metal carbides (Weber 1973). He realised 
and utilised the ambivalent nature of d electrons: these electrons quit the core region in 
the condensed state, but remain localised enough, and their interaction with the lattice 
vibrations can be treated in terms of local charge redistribution in real space. He 
introduced the loosely bound outer shell at the transition-metal site and considered its 
additional contribution to the ion-ion interaction. This interaction has the features of 
the resonance ‘screening’ of RI interaction and compensates the latter for a definite 
region of the Brillouin zone. In fact the specific electron contribution to the phonon 
renormalisation in the double-shell model is determined by the singularities of the 
density response function (2.3). This model in turn parametrises the singular behaviour 
of the band contribution to the self-energy part of the phonon Green function (Varma 
and Weber 1979). 

Another attempt at microscopic substantiation of the CDD model was undertaken by 
Wakabayashi (1977). In his ‘charge-fluctuation model’ CDD are treated as the charge 
transfer induced by the lattice distortions in the spirit of the general CDD model of Allen 
(1977) with the r contribution only. The comparative success of the description of the 
phonon anomalies by the general Allen model (e.g. Wakabayashi 1980, Miura etaZl984) 
lies in the strong q dependence of the intersite CDD-CDD self-energy matrix (D(rr)(q), i.e. 
again in the singularities of the density response function (2.3). 

We intend to propose another type of microscopic formulation of the CDD picture, 
taking into account the specific features of rare-earth (RE) compounds with unstable f 
shell. In this case the peculiarities of the electron contribution to the dynamical matrix 
are determined by the numerator of force matrix (2.2) and the electronic states in 
the response function (2.3) are soft enough intermediate-range excitons. The band 
contribution for the RE compounds will also be briefly discussed. 

The excitonic contribution to the phonon renormalisation can be obtained by means 
of standard procedure of Fourier transforming the force matrix (2.2) where charge- 
density response function is determined by the excitonic states 1P) = lB4) (equation 
2.5): 
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Then the second-order contribution to the energy shift of the phonon branch a is 
given by 

with 

Q;a(Rm) = ~ d 3 r q ~ ( r ) ~ ; a ( r ) q ~ ( r - ~ m )  (3.3) 

P:&) = M;'/2 exp(iqR,)e:,VfV(r - Rsr) Rst = Rs -I- Pt. (3.4) 
sr 

Here the symbol Vf stands for the projected gradient operator representing the dis- 
tortion of the crystal potential with the given point symmetry r. This contribution 
reduces to the usual local CDD expression (2.16) only in the case of Frenkel exciton with 
envelope function F(Rm) = dR,,O. In such a situation the symmetry of the vibrational 
mode is in one-to-one correspondence with the symmetry of local exciton rex: for a non- 
degenerate ground state of the electronic subsystem r = rex. Hence the breathing mode, 
which is very popular in current theories of electron-phonon interaction, can be obtained 
only when the local monopole excitations of the valence electrons are soft enough. As 
a rule the intrasite Frenkel excitons in semiconductors and insulators are of multipole 
character; hence the local CDD contribution of this type can be expected as a rule only 
to the dipole, quadrupole and other low-symmetry distortions of tables 1 and 2. 

The intermediate-radius excitons provide more diverse possibilities of charge distor- 
tions because of the composite structure of excitonic wavefunction (2.5). In particular, 
one may always construct a fully symmetric combination of Wannier functions in the 
conduction band obeying the condition 

To = Y"@ Yc ( 3 . 5 )  
where the valence state transforms along the irreducible representation yy of the point 
group, the combination &F(Z)t/Jj+[,Jr) of the Wannier function in the conduction band 
obeys the representation yc ,  and their direct product contains the unit representation To 
of vibrational mode. But the non-local nature of the excitation (2.5) generates the 
formfactor @ir)(q,  uqa) (cf (2.9)), which is absent in the conventional CDD theory. 

Now we turn to calculating this formfactor in the simplest LCAO approximation for a 
two-band semiconductor. Here we take the 'prime' valence and conduction electron 
wavefunctions constructed from the atomic orbitals with given 1, which transform along 
the given representation y of the crystal point group, and introduce the interband mixing 
integral in nearest-neighbour (NN) approximation 

1 # 1'. (3.6) 

Here VLt,yt(0) = 0. Then the regular linear combination of these orbitals describing the 
valence and conduction states can be written in the lowest order in V as 



Phonon spectra of mixed valence semiconductors 6501 

Here GO is the well known diagonal lattice Green function 

(3.8) 
k 

and &[k are the initial energy bands; A is the normalising factor defined by the equation 

A2 + Z(VGo)2 = 1 (3.9) 

where Z is the number of the nearest neighbours. In (3.7) subindex t numbers the 
sublattices to which the orbitals 1 and I’ belong, and x(m) are the projection operators 
selecting the linear combinations of NN atomic orbitals vrtt of the ‘alien’ band obeying 
the given irreducible representation y for the r point of the host band, 

lx(m>I = 1 x ( - m )  = T x ( m ) .  (3.10) 

In lattices with an inversion centre the upper sign (-) in equations (3 .7~)  and (3.10) 
corresponds to the different parity of conduction and valence bands, and the lower sign 
(+) should be chosen for the bands with the same parity. 

Now returning to equation (3.3) we retain only the strongest one-centre integrals in 
the matrix element Qkw, 

(3.11) 

including the ‘prime’ atomic orbitals on the same site only. 
First we consider the exciton with fully symmetrical envelope function F(1) in (2.5), 

which has non-zero component in the central cell F(0). In this case the main term in (3.2) 
proportional to Qiw(0) inevitably contains integrals Z & ( l ,  1 + Al) non-diagonal in ll’, 
and the selection rules for the integral (3.11) allow only the CDD with r defined by the 
restriction 

r c 7 8  yr. (3.12) 

For example the dipole CDD rG is allowed for the exciton with fully symmetrical envelope 
function in sp semiconductors ( y  = I+,, y‘ = rt). In the pd semiconductor (e.g. 
y = r,, y’ = ri5) four CDD modes are allowed, r = r; , rF2, rT5 and rT5, and so on. 
Neglecting the two-centre integrals in (3.2) one obtains 

(3.13) 

where 
(”) 

S ( q )  = C cos(q.Rm) 
m 

R ,  are the positions of the sites with which hybridisation in (3.7) takes place. 
The most interesting is the case of the exciton with angle-dependent envelope 

function, which has a node on the central site, F(0) = 0. Again, retaining only the one- 
centre integrals IFw (3.11) in Qiw(Rm = 0), we find that this matrix element inevitably 
contains the diagonal terms Z & ( I ,  1) and Z&(l’ ,  l’). Hence in a two-band semiconductor 
the breathing mode according to the selection rule (3.12) is essentially non-local. Direct 
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calculations of Ami, gives in this case the expression 

(3.14) 

Here we introduce F(m) = FIxex(R,) where xex(R,) are the phase factors defining the 
point symmetry of the envelope function similarly to the Wannier function (3.7); the T 
sign is to be chosen for the valence and conduction states with the same and opposite 
parity, respectively. In a sense, the exciton contributing the breathing mode can be 
qualified as a fully symmetric excitation, because the final state of the electronic sub- 
system has the same symmetry as the ground state of the filled valence band. In this case 
xex(Rm) and x(R,) have the same transformation properties and all phase factors cancel 
each other, 

In the case of t = t' and in simplifying approximation Z & ( l ,  1) = Z&(l', 1') (which 
holds precisely for the highly localised normalised 'prime' orbitals), equations (3.13) 
and (3.14) can be reduced to the product (2.9). Thus we obtain for the mode obeying 
(3.12) the following formfactors 

(3 .15~)  

(3.15b) 
'P ; (q)  = -2h2 lZf,(l,  1 ' ) 1 2  

@!(q) = (F2(O>/Eex(q)) lA2 -t (VG,)2S(q)12 

@:: (q) = -2h2 \ZFd(l, / ) I 2  
0:' (4)  = (Ff/Eex(q)) ( A V G ~ ) ~  12 - S(q>12* 

and for the r: mode 

(3 .16~)  

(3.16b) 

In the case of (3.15b) the additional dispersion introduced by 'PF(q) only slightly changes 
the usual CDD renormalisation but for the r: mode dispersion of additional formfactor 
is essential (see also the next section). 

4. Phonon renormalisation in RE semiconductors with stable and unstable valency 

In this section we apply the general principles of the theory to the specific case of rare- 
earth (RE) semiconductors in which the CDD modes are induced by the excitations in the 
f shells of RE ions. We study the sequence of RE chalcogenides EuS-'black' SmS-'gold' 
SmS, which are akin in their lattice symmetry, ion masses and may be distinguished 
only by the lattice constants and the electronic properties. EuS is the conventional RE 
semiconductor with extremely narrow valence f band, wide f-d energy gap ( A  = 1.12 eV) 
and stable valency. 'Black' SmS,,, is also a conventional semiconductor, but with small 
enough f-d gap (A = 0.23 eV). Finally, 'gold' SmS,,, is a mixed-valence (MV) semi- 
conductor with extremely narrow gap (or pseudo-gap) (A -7 meV) and anomalous 
electronic properties (see Kikoin 1983 and references therein). 

These semiconductors demonstrate remarkable distinctions in their phonon spectra, 
particularly in [555] direction (see figure 4(b)): SmS,,, in comparison with EuS has a 
softened LO branch, and SmS,,, has a profound anomaly in LA branch and LO phonons, 
which are softer than TO phonons in the whole Brillouin zone (Mook et aZl982, Bilz et 
a1 1979), an unusual situation for dielectrics with NaCl structure. Besides, in 'gold 
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Smo,75Yo,25 S’ the dispersionless resonance mode was discovered (Mook et a1 1978), 
which is apparently connected with the MV in this system (Stuber et a1 1982). 

All these special features of phonon spectra can be explained by involving the 
distinctions in the structure of f-shell excitation spectra in the three compounds (figure 
4(a)). ‘Standard’ EuS possesses only the conventional dipole fd excitations, which are 
hard enough ( h o  = 2.4 eV; Guntherodt 1974). The same mode in SmS,,, is essentially 
softer (hw = 0.8 eV; Guntherodt et a1 1983). These excitations from the point of view 
of our theory are responsible for the dipole CDD mode, and one may search for the 
corresponding phonon softening in SmS,,, in comparison with EuS. On can also find the 
mechanism of forming the monopole exciton, which should be responsible for the 
‘breathing’ CDD mode. According to the general theory this exciton ought to obey the 
selectionrule (3.5)wherer = I?:. Butinthecaseoffionsthestrongintrashellinteraction 
forces one ought to formulate this selection rule in terms of irreducible representations 
of the atomic f shells as a whole rather than by using the one-electron valence and 
conduction states. The ground state of Sm2+ ( f6) in SmS transforms along the 7Fo (r:) 
representation. To form the excited states f5BY with B y  (2.5) having F(0) = 0 along the 
lines of the previous section, one must combine the lowest term 6H5,2 (r;) of the state 
f5  with the linear combination (2.5) o f t  adjacent orbitals in cation sublattice trans- 
forming along the same y; representation. Such combinations can always be found 
(Stevens 1976). 

Monopole excitons were not detected in the optical spectra of SmS(B) because the 
corresponding transition is forbidden by the Laporte rule, but these excitons play the 
key role in explaining the phase transformation SmS,,,-SmS,,, (Stevens 1976, Kikoin 
1983,1984). This transformation does not change the symmetry of the ground state, and 

?g 
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Figure 5. Optic phonon renormalisation in the TL 
direction for CDD modes r; (broken curve), Tu 
(chain curve) and their sum (full curve). 

Figure 6.  Covalent factors for the phonon renor- 
malisation in black SmS: (a )  dipolar mode; ( b )  
monopolar mode. 

the theory of excitonic instability proposed by those authors implies the mixing of the 
ground and excited states of the same symmetry in the ‘black’ phase to be the source of 
the instability. Hence the ground state of the new phase can be schematically represented 
as a linear combination 

vm,g = cos(e)lfL 7 ~ o )  + ~in (e ) I f~ , (~H, / , )B , ,~ ; ,  7F0) (4.1) 

of the ground state of the ion f6  and the non-local exciton in the black phase both 
having singlet wavefunctions. Apparently this ‘bonding’ combination demands the 
‘antibonding’ partner 

%,ex = ~ o s ( e ) l f ~ ( ~ ~ , / , ) B , , , ;  ’F,) - sin(e)lfi ,  7 ~ o )  (4.2) 

which can be treated as the non-local fully symmetrical exciton in a new phase (the third 
column of figure 4(a)). Indeed, such excitations were registered by Travaglini and 
Wachter (1984) as f-f transitions with energies of 15 and 21 meV in the reflectivity 
spectra of SmS(,,. It is clear that the similar spatial extent of the initial and final states 
(4.1) and (4.2) enhances the oscillator strengths of the monopole transition and facilitates 
its detection in optical spectra. 

Thus we have the sources of the local (f-d) and non-local (f-f) CDD characteristic 
for systems with f ions close to valence instability, and in the final part of this paper we 
shall apply the general CDD theory to this specific case. Examining figures 1 and 2 and 
tables 1 and 2, we find that neither dipole nor monopole CDD mode can explain separately 
the softening of LO branch along the [E54 direction because the former nullifies in the 
L point and the latter gives no contribution to renormalisation in the r point. But the 
joint action of both modes gives the desired effect (figure 5 ) .  The origin of the dipole 
mode in SmS,,, is clear from the above discussion (f-d intra-atomic excitations), and the 
monopole contribution can be ascribed to the hypothetical exciton lf5By, 7Fo) (2.5) (f-$ 
transition). The final state of the latter transition is essentially non-local; hence the 
contribution of the covalent factors (3.1%) and (3.16b) should be included. However, 
the dipole covalent factor is practically dispersionless (figure 6(a)), and does not influ- 
ence the form of the phonon curve. As to the monopole covalent factor, its contribution 
increases when approaching the zone boundary (figure 6(b)) , but this dispersion is 
practically the same as that for the standard local formfactor for LO mode (type I of 
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figure l ) ,  and cannot be distinguished experimentally. Turning to the LA mode we note 
that in the case of the polarisable heavy ions the CDD contribution to the LA mode is 
always smaller than that to the LO branch. Besides, the specific compensation mechanism 
due to the intersite CDD interaction leads to the additional reduction of LA branch 
renormalisation (Kikoin and Mishchenko 1988). 

However, in gold SmS the interaction between the monopole CDD and the longi- 
tudinal branches is greatly enhanced due to the presence of extremely soft f-3 exciton 
(4.2) in the electron spectrum of MV semiconductor. In this case the monopole CDD 
renormalisation of LA branch (figure 1 , type 11) results in the deep ‘sag’ in the middle of 
[ f f f ]  direction (Bennemann and Avignon 1979) , which describes roughly the character 
of renormalisation, but the careful analysis of the experimental data shows that really 
the formfactor of LA mode softening is asymmetrical with the maximum shifted towards 
the zone boundary (Matsuura et a1 1980). This shift is excellently explained by the 
influence of the covalent formfactor @ l r 1 ) ,  which has the form 

in the case of the MV ground and excited states (4.1) and (4.2). Figure 7(a) presents the 
covalent formfactor for different values of the normalisation coefficient A .  The full 
formfactor @ ( r T )  in comparison with the experimental one extracted from the neutron 
scattering data (Mook et a1 1982) by cancelling the rigid ion model contribution (Kikoin 
and Mishchenko 1988) is shown in figure 7(b). It is seen that inclusion of the covalent 
formfactor essentially improves the consistency of the theory with the experiment 
compared with the point CDD model. 

The ‘adiabatic’ picture is invalid for the interaction between the excitonic CDD and 
optical phonon modes because these modes have very close frequencies. This is the 
reason for the failure of all attempts at describing both the optic and acoustic modes in 
MV SmS in a framework of adiabatic CDD theory (Bilz et a1 1979, Entel et a1 1979). 

L I 

(61 
L 

Figure 7. Formfactors of phonon frequency renormalisation in the ‘gold’ phase of SmS. (a) 
Covalent factor for A* = 0.8 (broken curve) and A 2  = 0.6 (full curve). (b )  Phonon shifts 
Drl (4) in SmS[,,: experiment (full curve), local CDD model (dotted curve) and CDD model 
with covalent factor taken into account (broken curve). All shifts are normalised to unity. 
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Actually, the different character of interaction of LA and LO modes with soft rl valence 
fluctuation mode leads to different types of phonon renormalisation and to the appear- 
ance of the resonance mode in the LO-LA gap in the optical and neutron spectra of gold 
SmS . 

The same approach to the excitonic contribution can be checked for the CsCl 
symmetry. Figure 3 illustrates the CDD renormalisations in the local approximation for 
this case. Although there are no MV semiconductors possessing such symmetry, the 
famous mixed-valence samarium hexaboride with the CaB6 crystal structure can be 
treated approximately as an example of CsCl MV semiconductor when neglecting the 
elastic forces within the boron octahedra. Recent neutron scattering measurements 
(Alekseev et a1 1989) have revealed anomalies just in those directions. Moreover the 
resonance mode in LA-LO gap is also seen. Preliminary analysis shows that the excitonic 
theory of phonon renormalisation gives a satisfactory description of the experimental 
anomalies. It is interesting that in this case the covalent formfactor plays the decisive 
role in the renormalisation; no consistent explanation of the experiment can be obtained 
within the conventional local CDD theory for this system. The detailed description of the 
phonon spectra of both samarium-based MV semiconductors will be presented in a 
forthcoming paper. 
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